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Abstract. The use of active wake mixing (AWM) to mitigate downstream turbine wakes has created new opportunities for

reducing power losses in wind farms. However, many current analytical or semi-empirical wake models do not capture the flow

instabilities which are excited through the blade pitch actuation. In this work, we develop a framework for modeling AWM

which accounts for the impacts of the large-scale coherent structures and turbulence on the mean flow. The framework uses

a triple-decomposition approach for the unsteady flow field, and models the mean flow and fine-scale turbulent scales with a5

parabolized Reynolds Averaged Navier-Stokes (RANS) system. The wave components are modeled using a simplified spatial

linear stability formulation, which captures the growth and evolution of the coherent structures. Comparisons with the high

fidelity Large Eddy Simulations (LES) of the turbine wakes showed that this framework was able to capture the additional

wake mixing and faster wake recovery in the far wake regions for both the pulse and helix AWM strategies with minimal

computational expense. In the near wake region, some differences are observed in both the RANS velocities profiles and initial10

growth of the large-scale structures, which may be due to some simplifying assumptions used in the model.

1 Introduction

There are several unsteady phenomena that affect large-scale structures in turbine wakes and influence wake dynamics that arise

from factors such as atmospheric conditions and turbine control strategies. Existing steady-state models are often inadequate

for capturing these complexities, and instead, a reduced-order model that can accurately represent flow instabilities and their15

impact on the wake’s evolution is needed. In this paper, such a model is developed and used to analyze wake recovery in the

context of wind farm flow control. However, it is important to note that the insights gained from this modeling approach may

also be relevant for modeling other processes, such as wind farm layout optimization.

Wind farm flow control methods are primarily designed to reduce power losses in wind farms due to the effects of wakes

on downstream turbines. Common approaches include static or dynamic adjustments to the settings of upstream turbines, such20

as modifying the induction factor (turbine derating), yaw angle (wake steering), or blade pitch (wake mixing) (Meyers et al.,

2022). This work focuses specifically on active wake mixing (AWM), which aims to excite flow instabilities in the wake to

enhance the entrainment of mean velocity, resulting in faster wake recovery.
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Following Cheung et al. (2024a), AWM can be implemented by specifying a dynamic blade pitch, θ(t), on top of the baseline

pitch set point, θ0(t) as,25

θ(t) = θ0(t) +Acos(ωet−κΘ(ψ(t) +ϕclock)), (1)

where A is the pitching amplitude, ωe is the excitation frequency, ψ is the azimuth position of the blade, ϕclock is the clocking

angle, and κΘ is an azimuthal wavenumber. The parameter κΘ controls the structure of the flow instabilities imparted on

the wake and is often used to distinguish between different AWM strategies. Examples include the pulse method (κΘ = 0),

which generates an axisymmetric instability in the flow through collective blade pitching (Goit and Meyers, 2015; Munters30

and Meyers, 2018), and the helix method (κΘ =−1), which uses individual pitch control to impart a helical structure on the

wake that rotates in the direction opposite the turbine (Frederik et al., 2020a). The instabilities actuated in the wake according

to an excitation frequency, which can be specified through a Strouhal number based on the inflow velocity, Uinf , and turbine

diameter,D, as ωe = 2πStUinf/D. Strouhal numbers based on the natural unsteady properties of the wake are typically sought

(St≈ 0.3), leading to flow structures that are generated over much longer periods than a rotor period (Frederik et al., 2020b).35

One type of existing reduced-order wake model is the steady-state, analytical one. This type of model finds its roots in the

Jensen (Jensen, 1983) and Ainslie (Ainslie, 1988) models, for instance, and also includes more recent, sophisticated versions

such as the cumulative curl model (Bastankhah and Porté-Agel, 2014). Many researchers and engineers currently interface with

these models through the FLORIS code developed at NREL (Sinner and Fleming, 2024), which is widely used to optimize

wind farm performance. The inherently steady-state nature of these models and their reliance on empirical tuning limits their40

applicability in scenarios where unsteady flow features are critical. Recent work has shown this is the case for AWM by

connecting the performance of different AWM strategies to the underlying fluid mechanics associated with the induced flow

instabilities, particularly the interactions between unsteady coherent flow structures and wake recovery dynamics (Korb et al.,

2023; Cheung et al., 2024a). Notably, Cheung et al. (2024a) introduced a spatial linear stability analysis to quantify the growth

characteristics of initial flow disturbances based on the temporal forcing frequency and forced azimuthal wavenumber, and45

showed a correlation between turbulent entrainment statistics in the wake and modal energy gain. These findings suggest that

an accurate model for AWM should be capable of representing the unsteady effects of coherent structures on the flow.

The behavior of large-scale coherent structures in various canoncial shear flows is a well-studied problem with a vast body of

existing literature. A number of previous works describe the formation and behavior of these structures in turbulent boundary

layers (Hussain, 1986; Robinson et al., 1991), free shear layers (Ho and Huerre, 1984), jets (Crow and Champagne, 1971),50

and wakes (Fuchs et al., 1979). Of particular relevance to the current work are the theoretical and modeling approaches used

to analyze such flows. Hussain and Reynolds (1970) introduced the concept of a triple-decomposition analysis to separate the

mean flow, fine-scale turbulent components, and wave components of flow, which was widely used in modeling jet (Iqbal and

Thomas, 2007) and boundary layer (Kwon et al., 2016) flows. A number of previous studies have shown that the growth of the

coherent structures in shear flows can be modeled by spatial stability theory (Cheung and Lele, 2009; Cheung and Zaki, 2011),55

and noted that the coupling the growth of the large scale structures to the mean flow evolution was critical to capturing the
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Table 1. Hub-height wind speed conditions used in the turbine wake study. All values are taken from the simulated atmospheric boundary

layer.

Name Wind-Speed (WS) Turb. intensity (TI) Shear Exponent Rotor disk veer

Low WS/Low TI 6.52 m/s 0.036 0.142 7.9◦

Med WS/Low TI 9.05 m/s 0.031 0.160 8.9◦

High WS/Low TI 11.58 m/s 0.035 0.156 5.6◦

behavior of the flow. However, these modeling approaches have yet to be applied to the problem of turbine wakes, leading to a

large gap between the currently available steady state wake models and computationally expensive, high fidelity simulations.

The objective of the current work is to develop a physics-based, computationally efficient model that can capture the effects

of active wake mixing on turbine wakes. While turbine wakes contain significant differences from the canonical jet flows60

discussed above, we show that by using a triple-decomposition approach, we can still capture the mean flow using a parabolized

RANS model, and the large scale structures can be modeled with a spatial linear stability formulation. In the following sections,

we describe the mathematical formulation used in this study and the high fidelity numerical simulations of the turbine wakes

used to calibrate and evaluate the reduced order model. We then show comparisons between LES calculations and the RANS

with linear stability model for different AWM strategies, and conclude with a summary of the work and a discussion of future65

work in this area.

2 Methodology

2.1 Atmospheric and turbine conditions of interest

Though the current model is meant to be broadly applicable to all turbine wake flows from both onshore and offshore horizontal

axis wind turbines, this work focuses on modeling AWM as applied to larger offshore wind turbines under stable atmospheric70

conditions. For these modern wind turbines, the application of AWM can potentially lead to substantial wake benefits and

noticeable AEP gains. For offshore locations, the prevalence of stably stratified conditions can also lead to many situations

where the turbine wakes are especially long and any naturally occurring wake mixing is inhibited.

Representative offshore conditions were selected for this study based on measured data from a floating lidar measurement

campaign conducted off the NY bight (Mason, 2022; DNV, 2023). The floating lidar data, collected in 10 minute intervals over75

a period of 1.6 years, provided velocity and turbulence intensity (TI) profile information for heights between 20m and 200m.

From this data, a selection process was undertaken to generate three representative wind speed profiles with relatively low TI

(see table 1) as described in Brown et al. (2025).

These conditions corresponded to the likely operating range of the IEA 15MW reference turbine where AWM strategies

might be deployed. The IEA 15MW reference turbine was used in this study due to its similarity with current offshore wind80
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Table 2. Details of the IEA15MW reference turbine

Name Wind-Speed

Hub-height 150 m

Rotor diameter 240 m

Rated wind speed 10.59 m/s

Design Ct 0.804

Design TSR 9.0

turbines being developed by major turbine OEM’s. The details of this turbine are summarized in table 2, with additional

information available from Gaertner et al. (2020).

As discussed in section 2.5.1, the selected wind conditions and turbine model were used to set up high-fidelity LES calcula-

tions for turbines with and without AWM activated. The LES data was then used to calibrate RANS closure model coefficients

in the wake model, and to compare the accuracy of the final outputs from the model.85

2.2 Mathematical formulation

To model both the steady-state wake profiles and the unsteady dynamics of coherent structures which may be excited through

AWM, we use the triple-decomposition approach pioneered by Hussain and Reynolds (1970) in their studies of boundary layer

flows. The triple-decomposition formulation separates the flow variables u(x, t) into the three components

u(x, t) = U(x) + ⟨u(x, t)⟩+u′(x, t). (2)90

where U(x) is the time-averaged mean flow, ⟨u(x,t)⟩ is the phase-averaged velocities, and u′(x, t) are the fine scale turbulent

fluctuations. The mathematical operations required to compute the mean flow over an averaging time T is given by

f =
1
T

T∫

0

f(x, t) dt (3)

and the phase average is given by

⟨f⟩=
1
N

N∑

n=0

f(x, t+nτ) (4)95

for a given time period τ of the coherent structure and for a specified number of periods N . Once the mean and the phase

averaged velocities are known, the fine scale fluctuating components can be calculated as u′(x, t) = u(x, t)−U(x)−⟨u(x, t)⟩.
The wave component ũ(x,t) of the flow field is defined as

ũ(x,t) = ⟨ũ(x,t)⟩−U(x)

4

https://doi.org/10.5194/wes-2024-155
Preprint. Discussion started: 9 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. An example of a triply decomposed flow field for a wind turbine wake. This case is from the HelixA4 case under stable Low

WS/Low TI ABL conditions with 4◦ amplitude forcing. In each contour the normalized streamwise velocity U/U∞ is plotted.

An example of a turbine wake which has been triply-decomposed is shown in Figure 1. In this case, the turbine flow field

was calculated using LES and averaged according to definitions (3) and (4), which leads to clear depictions of the mean flow

field features as well as the large-scale coherent structures which develop within the wake.

One advantage of using the triple-decomposition approach is that it allows for computationally efficient models to be de-

veloped which can solve for each of the three components. Interactions between the different flow components can also be100

included which show how the large-scale coherent structures can impact the mean flow and vice-versa. In the following sec-

tions, we describe how a parabolic RANS model can be used to efficiently capture the mean flow and fine-scale turbulent flow

components. This is coupled to a linear stability model for the wave components of the flow, and we show that as the large

scale coherent structures develop within the wake, the mean velocity profiles are impacted as well, leading to the desired wake

mixing behavior in this application.105

2.3 RANS model

In this section, a RANS model is formulated to couple the effects of coherent structures and turbulence on the evolution of the

mean velocity field. The model is based on the standard k-ε RANS closure model (Jones and Launder, 1972); however, a few

assumptions are made to simplify the model, as the focus is on developing a computationally efficient representation of the

effects of active wake mixing on the mean flow. First, the dynamics are assumed to be axisymmetric, reducing the complexity110

of the model to two-dimensions. Second, the boundary layer approximation is applied so that: (1) second order derivatives in

the streamwise direction, x, are small relative to those in the radial direction, r; (2) the radial pressure gradient is decoupled

from the velocity field; and (3) turbulent production is dominated by the radial mean streamwise velocity gradient. This leads

5
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to a parabolic system that can be marched in the downstream direction, as in Cheung et al. (2024b). Lastly, direct interactions

between the coherent structures and the turbulence are neglected so that AWM only forces the evolution of the mean velocity.115

The resulting equations are

∂Ū

∂x
+
∂V̄

∂r
+
V̄

r
= 0 (5a)

Ū
∂Ū

∂x
+ V̄

∂Ū

∂r
=

1
r

∂

∂r

[
r(ν+ νt)

∂Ū

∂r

]
+FCS (5b)

Ū
∂k

∂x
+ V̄

∂k

∂r
= νt

(
∂Ū

∂r

)2

− ε+
1
r

∂

∂r

[
r(ν+ νt/σk)

∂k

∂r

]
(5c)

Ū
∂ε

∂x
+ V̄

∂ε

∂r
=
C1εε

k

[
νt

(
∂Ū

∂r

)2
]
− C2ε

k
ε2 +

1
r

∂

∂r

[
r(ν+ νt/σε)

∂ε

∂r

]
(5d)120

where Ū and V̄ are the mean streamwise and radial velocity components, respectively. The effects of turbulence, U ′, on the

mean flow are represented by the eddy-viscosity νt = Cµk
2/ε, where k and ε are the turbulent kinetic energy and dissipation.

To close the k-ε model, the constants are calibrated based on LES data in Section 2.3.1. It is important to note that this model

is not limited to the k-ε turbulence model; rather, it represents one common approach to modeling the effects of turbulence.

The term FCS represents forcing of the mean flow by the wave component, ũ125

FCS =−ũ∂ũ
∂x

+ ṽ
∂ũ

∂r
(6)

and the coupling between the mean component and wave component is discussed further in Section 2.4.

To solve equations (5a)-(5d), they are discretized on a uniform grid in the radial direction using a second-order centered

difference method. The radial domain extends to rmax = 5R with a uniform spacing of ∆r = 0.025R. In the x-direction, the

equations are discretized around the cell centers and a Crank-Nicolson method is used to march 20D downstream with uniform130

step sizes of ∆x= 0.1R. The resulting tridiagonal system is solved using an iterative solver, which advances the solution from

one x-location to the next.

For each variable, Neumann boundary conditions are applied at r = 0,

∂Ū

∂r
(r = 0) = 0,

∂k

∂r
(r = 0) = 0,

∂ε

∂r
(r = 0),

∂V̄

∂r
(r = 0) = 0,

and Dirichlet boundary conditions are applied at r = rmax,135

Ū(r = rmax) = U∞, k(r = rmax) = k∞, ε(r = rmax) = 0,

where k∞/U2
∞ = 1.0×10−3 is specified based on the LES calibration data. Note that the continuity relation (5a) only requires

one boundary condition to be imposed on V̄ .

A hyperbolic tangent profile is used to model the initial condition for Ū at x= x0,

Ū(x0) = 0.5(U∞−U0)
(

1 + tanh
(
r− re

∆

))
+U0, (7)140
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where the nondimensionalized values U0/U∞ = 0.5, re/R= 1.2, and ∆/R= 0.05 were determined to provide a good agree-

ment with the azimuthally averaged velocity deficit profiles from the LES data near x/D = 2 (see Figures 4 and 5). How-

ever, it should be noted that the effects of the nacelle in the near wake are not accounted for in the RANS formulation.

The initial profile for k is taken to be proportional to the square of the mean velocity gradient, k(x0)∼ (∂Ū/∂r)2 + k∞,

such that
√

3max(k(x0))/2 = 0.125, and the initial ε is taken to balance turbulent kinetic energy production, i.e., ε(x0) =145
√
C1εk2(∂Ū/∂r)2.

2.3.1 Calibration of RANS

The coefficients Cµ,C1ε,C2ε of the k− ϵ RANS closure model were calibrated to match the rotor averaged velocities from

the baseline LES. Since the RANS formulation does not account for the hub and nacelle region from the LES (see fig. 1),

the calibration was formulated to match the rotor averaged velocities from a distance of x/D = 2.0 to x/D = 8.0. The cost150

function for this calibration was a L2 norm error between the RANS output and the LES output. L-BFGS-B (Byrd et al., 1995;

Zhu et al., 1997) algorithm as implemented in scipy was used for the calibration. The optimal values from this calibration

are Cµ = 0.0035,C1ε = 0.163,C2ε = 2.86. It is important to note that these values are particular to the initial conditions and

RANS closure model used, and not a general guideline for wake predictions. It is also to be noted that the calibration is

only performed for the baseline cases and not the AWC cases. The constants σk and σε were not included in the calibration155

process; instead, the standard values σk = 1.0 and σε = 1.3 proposed by Jones and Launder (1972) were used. Figure 7 shows

a close match between the baseline RANS and LES results, showing that these calibrated parameters are representative model

constants for capturing the wake behavior in the baseline cases, and will be used for all the RANS results presented in this

work.

2.4 Linear stability model160

In this work, we are primarily interested in evaluating the feasibility of using a wave component model to determine the impact

of large scale coherent structures on the turbine wakes. Many approaches have been used previously in the literature to capture

the dynamics of large scale structures in shear flows, including linear and nonlinear stability analysis (Cheung and Lele, 2009),

non-modal stability analysis (Hack and Zaki, 2015), and global stability analysis (Schmid, 2007). These methodologies have

been very well developed and successful in analyzing other canonical flows such as pipe flows, boundary layers, and jets.165

As an initial step towards demonstrating the feasibility of this modeling approach, a simple parallel flow, inviscid, spatial

linear stability analysis was chosen for this work. The focus of the analysis is to model the growth of the large scale coherent

structures and capture resulting changes to the mean flow of the turbine wake with minimal computational effort. Additional

effects not captured in this analysis, such the effects of shear, veer, swirl, or atmospheric stratification, will be included in

future analyses.170
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2.4.1 Piecewise constatnt velocity profile

Analytic solutions to the spatial linear stability problem are possible if we assume the wake turbine profile remains axisym-

metric and roughly follows a piecewise constant profile. In the current work, we adopt the two-step profile shown in figure 2,

which is defined by

Upw(r) =





U0, r < r1

U ′, r1 ≤ r ≤ r2

U∞, r > r2

(8)175

where U0 is the centerline velocity, U∞ is the freestream velocity, and U ′ = 1
2 (U0 +U∞) is the averged velocity of the wake

shear region from r1 ≤ r ≤ r2. During the solution process, the r1 and r2 parameters can be chosen so that the displacement

δ and momentum δw areas of the Upw profile match that same displacement and momentum areas calculated from the RANS

mean flow profiles URANS . Using the following definitions for δ and δθ:

δ(U) = 2π

∞∫

0

(
1− Ū(r)

U∞

)
r dr (9)180

δθ(U) = 2π

∞∫

0

Ū(r)
U∞

(
1− Ū(r)

U∞

)
r dr (10)

r1 and r2 are then found by solving the following algebraic system:

δ(Upw) = δ(URANS) (11a)

185

δθ(Upw) = δθ(URANS) (11b)

An additional simplification is possible if we assume that the wake shear region remains small relative to the size of the rotor

diameter. In this case, we can decompose the Upw profile into

Upw(r) = U
(0)

(r) +U
(1)

(r) (12)

where U
(0)

is the Heavside step function190

U
(0)

(r) =




U0, r ≤ re

U∞, r > re

(13)
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Figure 2. Comparison of the step profile with the hyperbolic tangent profile

and U
(1)

is a small perturbation to the single step profile:

U
(1)

(r) =





0, r < r1

+∆U, r1 ≤ r ≤ re

−∆U, re ≤ r ≤ r2

0, r > r2

(14)

This assumption allows the analytical results of Batchelor and Gill (1962) to be directly applied with some minor modifications,

as discussed in the following section.195

2.4.2 Spatial linear stability formulation

For the flow variables ϕ̃= [ũ ṽ w̃ p̃], we assume that they can be expressed in terms of the radial eigenfunctions ϕ̂n and the

complex exponential basis functions

ϕ̃(x,r,θ, t) = ϕ̂n(r)eiαx+inθ−iωt, (15)

9
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where α= αr +iαi is the complex streamwise wavenumber, n is the azimuthal mode number, and ω is the temporal frequency.200

Assuming an inviscid, parallel flow with a piecewise constant velocity profile, the governing equations for mass and momentum

conservation of the wave components ϕ̃ are

∂ũ

∂x
+
∂ṽ

∂r
+
ṽ

r
+

1
r

∂w̃

∂θ
= 0 (16a)

∂ũ

∂t
+U

∂ũ

∂x
=−1

ρ

∂p̃

∂x
(16b)205

∂ṽ

∂t
+U

∂ṽ

∂x
=−1

ρ

∂p̃

∂r
(16c)

∂w̃

∂t
+U

∂w̃

∂x
=− 1

ρr

∂p̃

∂θ
(16d)

Here U(r) = Upw, with the parameters r1, r2, U0, and U∞ chosen to match the characteristics of the RANS wake profiles.210

Inserting the representation (15) in equations (16) leads to the following spectral versions of the governing equations

iαûn +
ṽn

r
+
∂ṽn

∂r
+
in

r
w̃n = 0 (17a)

ξûn + v̂n
dU
dr

+ f̂ (1)
n =−iα

ρ
p̂n (17b)

215

ξv̂n =−1
ρ

dp̂n

dr
(17c)

ξŵn =−i n
ρr
p̂n (17d)

where ξ(r) = αŪ (0)(r)−ω. Note that the Upw profile has been decomposed according to equation (12), and the term f̂
(1)
n =

iαU
(1)
ûn. Equations (17) can be combined into the Rayleigh ordinary differential equation for the pressure p̂n variable220

1
r

d
dr

(
r

dp̂n

dr

)
−
[(n

r

)2

+α2

]
p̂n = iραf̂ (1)

n . (18)

Both the eigenfunctions p̂(r) and the eigenvalues α can be decomposed into a zeroth order and first order component

p̂n = p̂(0)
n + p̂(1)

n (19a)

10
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α= α(0) +α(1) (19b)225

Here both p̂(1)
n and α(1) are assumed to be small relative to p̂(0)

n and α(0), respectively, and the solution can be found as part of

an eigenvalue perturbation problem. Equation (18) can be similarly divided into the zeroth order and first order contributions,

where only the appropriate order terms are included in equation:

L{p̂(0)
n }=

1
r

d
dr

(
r

dp̂(0)
n

dr

)
−
[(n

r

)2

+
(
α(0)

)2
]
p̂(0)

n = 0 (20a)

L{p̂(1)
n }+ 2α(0)α(1)p̂(0) = iρα(0)f̂ (1)

n (20b)230

The zeroth order solution to equation (20a) is given by the modified Bessel functions

p̂(0)
n (r) =




C1In(α(0)r), r < re

C2Kn(α(0)r), r ≥ re

(21)

The constants C1 and C2 are chosen so the pressure is continuous at r = re, and the kinematic condition for the displacement

η of a material line at r = re is also satisfied:

∂η̃

∂t
+U

∂η̃

∂x
= ṽ. (22)235

Assuming the functional form η̃(x,θ, t) = η̂eiαx+inθ−iωt, enforcing above conditions leads to the following nonlinear relation

which can be used to solve for α(0) at every frequency ω:

ξ(r0)2

ξ(r∞)2
=
K ′n(α(0)re)In(α(0)re)
Kn(α(0)re)I ′n(α(0)re)

(23)

Up to this point the analysis follows that of Batchelor and Gill (1962) for piecewise constant velocities, and is shown to be

valid for infinitely sharp, top-hat velocity profiles. However, in the current work, capturing the effects of the wake spreading

are important to the growth and evolution of large scale structures. This can be accomplished by including a small perturbation

to the U
(0)

profile, and calculating the corresponding perturbation to the growth rates. Once p̂(0)
n and α(0) are known, the

perturbation α(1) to the wavenumber can be found by applying the inner product

⟨f,g⟩=

∞∫

0

f(r)g(r) r dr

to equation (20b), leading to

⟨L{p̂(1)
n }, p̂(0)

n ⟩+ ⟨2α(0)α(1)p̂(0), p̂(0)
n ⟩= ⟨iρα(0)f̂ (1)

n , p̂(0)
n ⟩. (24)240
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Because p̂(0)
n is self-adjoint and satifies equation (20a), the terms in equation (24) can be rearranged into the following expres-

sion for α(1)

α(1) =−

(α(0))2
∞∫

0

Ū
(1) p̂

(0)
n p̂

(0)
n

α(0)U
(0)−ω

rdr

2

∞∫

0

p̂(0)
n p̂(0)

n r dr

. (25)

The full eigenvalue α can then be reconstructed through equation (19b). The real part of the wavenumber αr determines the

streamwise wavelength of the large scale coherent structures, while the imaginary component αi dictates the spatial growth of245

the structures.

To examine the accuracy of this asymptotic, analytic approach with a piecewise constant velocity profile, a comparison of

the linear stability solution using a continuous hyperbolic tangent profile (14) and the Upw profile from (8) is shown in figure

3. As expected, the dispersion relation α= α(ω) shows excellent agreement between the approaches when the profile width ∆

is relatively small. For larger values of ∆, the wavenumber αr calculated using the piecewise constant profile approximation250

Upw still agreed with the hyperbolic tangent profile, although there were some discrepancies visible for the growth rate αi.

However, for the lower frequencies of interest, the agreement between the approaches is still reasonably accurate.

2.4.3 Coupled solution process

The spatial linear stability formulation described in section 2.4.2 can be easily integrated into the RANS solution process

discussed in section 2.3. At every streamwise location x, the RANS velocity profile is first computed assuming FCS = 0.255

This velocity profile is then used in the linear stability formulation to compute the velocity eigenfunctions û and v̂ and the

corresponding wavenumbers α. The evolution of the wave component of the flow variables can be calculated using the formula

ũ(x,r,θ, t) = anûn(r)exp
(
i

∫
α(x) dx− inθ− iωt

)
(26)

where the integral over α in the exponential accounts for the slow changes in growth rate as the mean flow evolves. The260

initial amplitude of he wave component is given by an. Once ũ and ṽ are known, the mean flow correction term FCS can be

calculated, and a new RANS velocity profile can be computed for the same x location. This process is repeated until the RANS

velocity profiles meet a specified convergence criteria (the Frobenius norm of two successive solutions less than 10−7), after

which the streamwise marching process proceeds to the next location at x+ ∆x.

The initial formulation of both the RANS model and the linear stability model was implemented in python and run on265

workstations with a single CPU for all cases. For typical cases which used 200 grid points in the radial direction and 200

streamwise points, the baseline RANS calculation took 1-2 seconds to compute, and in cases with the RANS model coupled to

the linear stability model, the total solve time was approximately 11-12 seconds.
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Figure 3. Comparison of linear stability theory between the analytic tanh profiles (14) and the piecewise step profiles (8). The first helical

mode n = 1 is shown in all cases.

2.5 AMR-Wind LES calculations

To generate the data necessary to calibrate the RANS model coefficients and evaluate the accuracy of the coupled RANS and270

linear stability approach, a series of large eddy simulations (LESs) of turbine wakes was performed. These were done with the

AMR-Wind code (Sharma et al., 2024; Sprague et al., 2020; Mullowney et al., 2021), a massively parallel, block-structured

adaptive-mesh, incompressible flow solver for wind turbine and wind farm simulations. AMR-Wind solves the incompressible

and low Mach formulations of the Navier-Stokes equations, as well as temperature, subgrid scale kinetic energy, and other

scalar equations necessary for LES of wind farms. AMR-Wind solves the discretized equations using a second order finite275

method and second order temporal integration. AMR-Wind includes all the necessary physics modules to simulate atmospheric

boundary layers (ABLs), e.g., mesoscale forcing, Coriolis forcing, geostrophic forcing, Monin-Obukhov similarity theory,

gravity forcing, and coupling to OpenFAST (Jonkman et al., 2018; NREL, 2023) for turbine representation using actuator line

models.
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Table 3. AWM parameters

Name Modes (κΘ) Amplitude (A) Strouhal number (St) Clocking Angle (ϕclock)

Baseline N/A N/A N/A N/A

HelixA2 -1 2 deg 0.30 90 deg

HelixA4 -1 4 deg 0.30 90 deg

PulseA2 0 2 deg 0.30 90 deg

PulseA4 0 4 deg 0.30 90 deg

2.5.1 Turbine simulation parameters and AWM settings280

Simulations using the IEA 15MW reference turbine and the atmospheric conditions listed in section 2.1 were performed in

AMR-Wind using the one equation ksgs LES model (Moeng, 1984) and an actuator line model coupled to OpenFAST to

represent the turbine blade forces. The simulation domains were either 4.5 km × 2 km × 1 km (Med WS case), or 6.7 km × 2

km × 1 km (Low WS and High WS case). In all cases a background mesh resolution of 5 m was used, which was refined to

a resolution of 2.5 m in region 4.75D upstream and 12D downstream of the rotor, leading to mesh sizes of 179M and 309M,285

respectively. A timestep of 0.02 seconds was used in the turbine simulations, and all simulations had a total runtime of at least

1000 seconds to allow the initial transients to dissipate and the wake structures to fully develop in the flow.

In the baseline turbine simulations, no AWM strategy was employed and the wake was allowed to develop naturally. These

baseline cases were compared to simulations where the helix and pulse AWM strategies were used (table 3). All AWM strategies

used a single actuation frequency of St = 0.30, which is consistent with the Strouhal forcing used in previous studies (Cheung290

et al., 2024a). The blade pitch amplitudes were set to either 2 degrees or 4 degrees in both the helix and the pulse AWM

strategies in order to determine the relative effectiveness of each actuation strategy.

3 Results

To evaluate the accuracy of the RANS and linear stability wake model, we compare the modeled wake behavior with the

corresponding wake behavior from the AMR-Wind simulations. Results are shown first for the baseline cases where no AWM295

strategy was used, which allow us to evaluate the underlying RANS model without any coupling to the linear stability model.

This is followed by a discussion of the AWM cases with helix and pulse actuation and an evalulation of the full RANS plus

linear stability model.

3.1 Baseline wake behavior

A comparison of the hub-height velocity profiles between the RANS model and the AMR-Wind LES calculation for the Med300

WS/Low TI and High WS/Low TI cases is shown in figures 4 and 5, respectively, for various downstream distances. We
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Figure 4. Comparison of the normalized hub-height velocity profile between the RANS model and AMR-Wind calculations for the baseline

Med WS/Low TI case.

observed that the baseline wake behavior for the Low WS case was very similar to the Med WS case because the turbine was

operating at the same thrust coefficient, so the Low WS comparisons are not shown below for the sake of brevity.

In the medium to far wake regions, for downstream distances x/D > 3.0, good agreement is seen for the wake profiles from

the RANS model and the AMR-Wind calculations. The general evolution of the wake deficit and the wake spreading behavior305

is well captured by the parabolized RANS model. The AMR-Wind wake profiles show evidence of veer effects, which causes
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Figure 5. Comparison of the normalized hub-height velocity profile between the RANS model and AMR-Wind calculations for the baseline

High WS/Low TI case.

asymmetry in the LES wake profiles. This effect is not captured by the RANS model due to the axisymmetric formulation, but

the overall match between the methods remains high.

Very close to the turbine rotor some differences between the wake profiles are noticeable. For streamwise distances x/D <

3.0 we see the influence of the hub and nacelle on LES wake profiles which is not captured in the RANS model. The actuator310

line representation of the turbine in AMR-Wind more accurately models the aerodynamics near the hub and root sections of the
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Figure 6. Comparison of the normalized centerline velocity profiles for the baseline turbine wakes without AWM.

blade, leading to small recirculation zone immediately downstream of the nacelle. The simplified nature of the initial RANS

profiles neglects these effects, as well as any asymmetries due to the interactions of swirl with shear and veer in addition to

speedup of the ambient flow from wake blockage. However, despite these approximations, the RANS model still accurately

captures the velocity shear near the wake edges.315

A comparison of the centerline and rotor averaged velocities shown in figures 6 and 7 provides a similar picture of the RANS

model’s accuracy for the baseline wake cases. In the far wake region, the RANS model accurately predicts the recovery of the

centerline and rotor averaged velocities. Very close to the rotor, the RANS model assumes the presence of a potential core

region in the wake which is not realistic, so it is unsurprising that the centerline velocities do not agree until x/D ≈ 4.0.

3.2 Comparisons for AWM cases320

With the application of an AWM strategy, we expect the turbine wake to mix faster due to the presence of the large scale

coherent structures. As shown in figures 8 and 9, the hub-height velocity profiles for the LES calculations and the RANS

with linear stability model indicate a faster wake recovery and increased mixing occurring in the downstream wake. For the
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Figure 7. Comparison of the normalized rotor averaged velocity profiles for the baseline turbine wakes without AWM.

Med WS/Low TI case in figure 8, there was qualitative agreement between the LES calculations and RANS with linear stability

model in predicting the changes to the wake width and centerline velocity changes, for both the helix and pulse AWM cases, and325

for both 2◦ and 4◦ pitch actuation. For the helix AWM case at the High WS/Low TI condition (figure 9), the LES calculations

show more impact to the centerline velocity recovery, although the RANS with linear stability model still show the changes to

the wake width due to the AWM.

The rotor averaged velocity comparisons in figures 10 and 11 show a similar level of agreement for the AMR-Wind and

RANS with linear stability model in the far wake. For downstream distances x/D > 5.0, the RANS with linear stability model330

qualitatively captured the wake recovery benefits for both the helix and pulse approach. For the High WS/Low TI condition,

it was also seen that the helix AWM was not as effective as in the Med WS/low TI case. This is attributed to the fact that

the turbine operates at a lower thrust coefficient at the higher wind speeds, resulting in less initial wake deficit and lower

velocity shear near the wake edges. The lower shear in the turbine wake translates to slower growth of the large scale coherent

structures, meaning that there is less opportunity for them to mix the turbine wake and impact the flow.335
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Figure 8. Comparison of the hub height velocity profiles for the AMR-Wind and RANS with linear stability model for the Med WS/Low TI

case with Helix AWM (right column) and Pulse AWM (left column) actuated.

Some differences between the LES calculations and the RANS with linear stability model are observed in the near wake

region of turbine wake. For the Low WS/Low TI and the Med WS/Low TI cases, the growth of the coherent structures in the

LES calculations is faster than the RANS with linear stability model, so the wake benefits to the rotor averaged velocity also

19

https://doi.org/10.5194/wes-2024-155
Preprint. Discussion started: 9 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 9. Comparison of the hub height velocity profiles for the AMR-Wind and RANS with linear stability model for the High WS/Low TI

case with Helix AWM.

appear earlier in the flow. However, in both the LES and the RANS with linear stability model, the growth of the large scale

structures saturate at similar levels downstream, so the final wake benefits in the far wake remain comparable.340
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Figure 10. Comparison of the normalized rotor averaged velocity profiles for the Low WS, Med WS, and High WS cases using the helix

AWM strategy with 2◦ and 4◦ actuation amplitudes.

3.2.1 Phase averaged velocity

Some insight to the behavior of the large scale structures can be seen in figure 12, where contours of the mean and phase

averaged velocity fields is shown for the Low WS/Low TI case. As expected, the near wake region of the RANS and linear

stability model fails to capture some flow features immediately downstream of the rotor disk. However, in the far wake region,

the differences in the coherent structures between the pulse AWM forcing and the helix AWM forcing become apparent. The345

wave components in the pulse case form axisymmetric structures with a wavelength of approximately 2D, while a spiral pattern

appears in the helix AWC cases with similar wavelength. In the AMR-Wind simulations the structures emerge earlier in the
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Figure 11. Comparison of the normalized rotor averaged velocity profiles for the Low WS and Med WS cases using the pulse AWM strategy

with 2◦ and 4◦ actuation amplitudes.

turbine wake, but eventually saturate and impact the wake in a qualitatively similar way compared to the RANS and linear

stability model predictions.

4 Conclusions350

In this work, a framework for modeling AWM was developed that accounts for the effects of both the large-scale coherent

structures and the turbulence on the mean flow. Using a triple-decomposition approach, the turbine wake flow was separated

into a time-averaged mean flow, fine scale turbulent, and phase averaged components, and a computationally efficient method

for solving these components was formulated. An axisymmetric, parabolized k− ε RANS model was used to solve for the

mean flow and fine scale turbulence components. To model the wave components of the flow, a simplified inviscid, parallel-355

flow, linear spatial stability analysis was used. The linear stability modes were coupled with the RANS model to capture the

interactions between the coherent structures and the mean flow.

Comparisons between the RANS with linear stability model and high-fidelity LES calculations of the turbine wakes showed

that this framework was able to capture the wake modifications due to AWM actuation, particularly in the far wake regions.

Additional wake mixing and more rapid wake recovery was observed for both the pulse and helix AWM strategies. Some360

differences are also observed in the near wake region of the flow. The high-fidelity LES calculations include non-axisymmetric
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Figure 12. Comparison of the AMR-Wind and RANS with linear stability mean velocity component (top row) with the phase averaged

velocity for the HelixA4 (middle row) and PulseA4 (bottom row) cases. In all cases the normalized streamwise velocity U/U∞ is plotted for

the Low WS/Low TI case.

features immediately downstream of the rotor which the baseline RANS model fails to capture, and the impact of the large

scale coherent structures is also more evident in the near wake region of the LES cases.

There are several limitations associated with the current formulation of the RANS model that could be improved in future

studies. One significant constraint is the axisymmetric assumption, which restricts the model’s applicability in realistic envi-365

ronments, such as ABLs characterized by large veer. To address this limitation, a parabolic three-dimensional version of the

model could be developed using the same principles established here by marching two-dimensional wake profiles downstream,

similar to the improvements suggested by Cheung et al. (2024b). Furthermore, incorporating direct interactions between the

coherent flow structures and the turbulence may resulting in a more accurate representation of the flow dynamics, although the

effect on the mean flow from these higher order interactions remains unknown. Lastly, this work has demonstrated the impor-370

tance of calibrating the RANS model constants; however, further work is needed to establish robust values for these constants,

including the use of additional data in the calibration process.
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Additional improvements to the linear stability model are also possible. The current model ignores the effects of swirl, shear,

and veer, which impacts the growth of the coherent structures and can help improve the comparisons with the high fidelity

simulations. It may also be possible to use the full RANS velocity profile in the Rayleigh equation, instead of a piecewise375

constant approximation, which would help improve near wake predictions. Finally, future work may also investigate the impact

of mode-to-mode interactions in a nonlinear stability framework. For example, the interactions between the axisymmetric

modes and helical modes may be crucial in determining the optimal forcing strategy, and could be worth exploring in later

studies.
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